Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 56(1): 235-249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253797

RESUMO

Cytochrome b5 reductase 3 (CYB5R3) is involved in various cellular metabolic processes, including fatty acid synthesis and drug metabolism. However, the role of CYB5R3 in cancer development remains poorly understood. Here, we show that CYB5R3 expression is downregulated in human lung cancer cell lines and tissues. Adenoviral overexpression of CYB5R3 suppresses lung cancer cell growth in vitro and in vivo. However, CYB5R3 deficiency promotes tumorigenesis and metastasis in mouse models. Transcriptome analysis revealed that apoptosis- and endoplasmic reticulum (ER) stress-related genes are upregulated in CYB5R3-overexpressing lung cancer cells. Metabolomic analysis revealed that CYB5R3 overexpression increased the production of nicotinamide adenine dinucleotide (NAD+) and oxidized glutathione (GSSG). Ectopic CYB5R3 is mainly localized in the ER, where CYB5R3-dependent ER stress signaling is induced via activation of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme 1 alpha (IRE1α). Moreover, NAD+ activates poly (ADP-ribose) polymerase16 (PARP16), an ER-resident protein, to promote ADP-ribosylation of PERK and IRE1α and induce ER stress. In addition, CYB5R3 induces the generation of reactive oxygen species and caspase-9-dependent intrinsic cell death. Our findings highlight the importance of CYB5R3 as a tumor suppressor for the development of CYB5R3-based therapeutics for lung cancer.


Assuntos
Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/genética , Citocromo-B(5) Redutase/metabolismo , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
Cell Death Dis ; 14(8): 567, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633973

RESUMO

Ferroptosis, a type of cell death induced by lipid peroxidation, has emerged as a novel anti-cancer strategy. Cancer cells frequently acquire resistance to ferroptosis. However, the underlying mechanisms are poorly understood. To address this issue, we conducted a thorough investigation of the genomic and transcriptomic data derived from hundreds of human cancer cell lines and primary tissue samples, with a particular focus on non-small cell lung carcinoma (NSCLC). It was observed that mutations in Kelch-like ECH-associated protein 1 (KEAP1) and subsequent nuclear factor erythroid 2-related factor 2 (NRF2, also known as NFE2L2) activation are strongly associated with ferroptosis resistance in NSCLC. Additionally, AIFM2 gene, which encodes ferroptosis suppressor protein 1 (FSP1), was identified as the gene most significantly correlated with ferroptosis resistance, followed by multiple NRF2 targets. We found that inhibition of NRF2 alone was not sufficient to reduce FSP1 protein levels and promote ferroptosis, whereas FSP1 inhibition effectively sensitized KEAP1-mutant NSCLC cells to ferroptosis. Furthermore, we found that combined inhibition of FSP1 and NRF2 induced ferroptosis more intensely. Our findings imply that FSP1 is a crucial suppressor of ferroptosis whose expression is partially dependent on NRF2 and that synergistically targeting both FSP1 and NRF2 may be a promising strategy for overcoming ferroptosis resistance in cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Ferroptose/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/genética
3.
Pharmaceuticals (Basel) ; 16(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37242466

RESUMO

MDH1 and MDH2 enzymes play an important role in the survival of lung cancer. In this study, a novel series of dual MDH1/2 inhibitors for lung cancer was rationally designed and synthesized, and their SAR was carefully investigated. Among the tested compounds, compound 50 containing a piperidine ring displayed an improved growth inhibition of A549 and H460 lung cancer cell lines compared with LW1497. Compound 50 reduced the total ATP content in A549 cells in a dose-dependent manner; it also significantly suppressed the accumulation of hypoxia-inducible factor 1-alpha (HIF-1α) and the expression of HIF-1α target genes such as GLUT1 and pyruvate dehydrogenase kinase 1 (PDK1) in a dose-dependent manner. Furthermore, compound 50 inhibited HIF-1α-regulated CD73 expression under hypoxia in A549 lung cancer cells. Collectively, these results indicate that compound 50 may pave the way for the development of next-generation dual MDH1/2 inhibitors to target lung cancer.

4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047042

RESUMO

Nitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical and environmental areas. Numerous studies have verified effective fluorescent methods to detect and image NTR activity; however, near-infrared (NIR) fluorescence probes for biological applications are lacking. Thus, in this study, we synthesized novel NIR probes (NIR-HCy-NO2 1-3) by introducing a nitro group to the hemicyanine skeleton to obtain fluorescence images of NTR activity. Additionally, this study was also designed to propose a different water solubility and investigate the catalytic efficiency of NTR. NIR-HCy-NO2 inherently exhibited a low fluorescence background due to the interference of intramolecular charge transfer (ICT) by the nitro group. The conversion from the nitro to amine group by NTR induced a change in the absorbance spectra and lead to the intense enhancement of the fluorescence spectra. When assessing the catalytic efficiency and the limit of detection (LOD), including NTR activity imaging, it was demonstrated that NIR-HCy-NO2 1 was superior to the other two probes. Moreover, we found that NIR-HCy-NO2 1 reacted with type I mitochondrial NTR in live cell imaging. Conclusively, NIR-HCy-NO2 demonstrated a great potential for application in various NTR-related fields, including NTR activity for cell imaging in vivo.


Assuntos
Corantes Fluorescentes , Dióxido de Nitrogênio , Corantes Fluorescentes/farmacologia , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Nitrorredutases/metabolismo
5.
Int J Oncol ; 62(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453252

RESUMO

Endothelin receptor A (EDNRA) has been reported to play various crucial physiological roles and has been shown to be associated with the pathology of several diseases, including colorectal cancer (CRC). However, the molecular mechanisms of EDNRA in the development of human CRC have not been fully elucidated to date. In this context, the present study was performed to investigate biological functions and novel downstream signaling pathways affected by EDNRA, during CRC progression. First, using public data repositories, it was observed that the EDRNA expression levels were markedly increased in CRC tissues, as compared to normal tissues. Patients with CRC with an increased EDNRA expression exhibited a significantly decreased survival rate in comparison with those with a lower EDNRA expression. Furthermore, a positive correlation between the levels of EDNRA and its ligand, EDN1, was found in CRC tissues. The ectopic expression of EDNRA or its ligand, EDN1, promoted, whereas the silencing of EDNRA or EDN1 decreased cell proliferation and migration in vitro. To elucidate the signaling pathways involved in the regulation of EDNRA expression in CRC cells, a phosphokinase array analysis was performed, and it was observed that the knockdown of EDNRA substantially suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in CRC cells. Of note, STAT3 silencing simultaneously decreased EDN1 and EDNRA expression, with the expression of EDN1 and/or EDNRA appearing to be directly regulated by binding STAT3 to their promoter region, according to chromatin immunoprecipitation and promoter assays, ultimately indicating a positive feedback loop in the expression of EDNRA and EDN1. It was also observed that treatment with an EDNRA antagonist (macitentan), alone or in combination with cisplatin, suppressed cell growth and migration ability, and induced cell apoptosis. Collectively, these data suggest a critical role of the EDN1/EDNRA signaling pathway in CRC progression. Thus, the pharmacological intervention of this signaling pathway may prove to be a potential therapeutic approach for patients with CRC.


Assuntos
Neoplasias Colorretais , Fator de Transcrição STAT3 , Humanos , Fosforilação , Fator de Transcrição STAT3/genética , beta-Arrestinas , Receptores de Endotelina , Ligantes , Neoplasias Colorretais/genética
6.
Ecotoxicol Environ Saf ; 248: 114334, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442398

RESUMO

Owing to their unique properties and biological activities, ionic liquids (ILs) have attracted research interest in pharmaceutics and medicine. Hypoxia-inducible factor (HIF)- 1α is an attractive cancer drug target involved in cancer malignancy in the hypoxic tumor microenvironment. Herein, we report the inhibitory activity of ILs on the HIF-1α pathway and their mechanism of action. Substitution of a dimethylamino group on pyridinium reduced hypoxia-induced HIF-1α activation. It selectively inhibited the viability of the human colon cancer cell line HCT116, compared to that of the normal fibroblast cell line WI-38. These activities were enhanced by increasing the alkyl chain length in the pyridinium. Under hypoxic conditions, dimethylaminopyridinium reduced the accumulation of HIF-1α and its target genes without affecting the HIF1A mRNA level in cancer cells. It suppressed the oxygen consumption rate and ATP production by directly inhibiting electron transfer chain complex I, which led to enhanced intracellular oxygen content and oxygen-dependent degradation of HIF-1α under hypoxia. These results indicate that dimethylaminopyridinium suppresses the mitochondria and HIF-1α-dependent glucose metabolic pathway in hypoxic cancer cells. This study provides insights into the anticancer activity of pyridinium-based ILs through the regulation of cancer metabolism, making them promising candidates for cancer treatment.


Assuntos
Neoplasias do Colo , Líquidos Iônicos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Líquidos Iônicos/toxicidade , Hipóxia , Oxigênio , Microambiente Tumoral
7.
Biomed Pharmacother ; 146: 112500, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34891118

RESUMO

Hypoxia inducible factor (HIF)-1α is an important transcription factor regulating cancer metabolism in hypoxic environment. Capsaicin is known to inhibit hypoxia-induced HIF activity in lung cancer. Hence, in this study we tried to elucidate its inhibitory mechanism of action. In lung cancer cells, including H1299, H23, A549, and H2009 cells, capsaicin inhibited cell growth and HIF activation. Under hypoxic conditions, capsaicin reduced the accumulation of HIF-1α protein and the expression of its target genes, including pyruvate dehydrogenase kinase 1 (PDK1) and glucose transporter 1 (GLUT1), with no effect on overall HIF-1α mRNA levels in the H1299 cells. In addition, capsaicin increased intracellular oxygen levels by suppressing mitochondrial respiration, resulting in a reduction of HIF-1α accumulation. Furthermore, mitochondrial ATP production was reduced by capsaicin through the inhibition of mitochondrial respiration in the H1299, H23, A549, and H2009 cells. These results indicate that capsaicin potentially exhibits anticancer therapeutic effects in lung cancer under hypoxic conditions.


Assuntos
Capsaicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/efeitos dos fármacos , Humanos
8.
Bioconjug Chem ; 32(11): 2377-2385, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34699716

RESUMO

Carboranes 1 and 2 were designed and synthesized for hydrophobic tag (HyT)-induced degradation of HaloTag fusion proteins. The levels of the hemagglutinin (HA)-HaloTag2-green fluorescent protein (EGFP) stably expressed in Flp-In 293 cells were significantly reduced by HyT13, HyT55, and carboranes 1 and 2, with expression levels of 49, 79, 43, and 65%, respectively, indicating that carborane is an alternative novel hydrophobic tag (HyT) for protein degradation under an intracellular environment. To clarify the mechanism of HyT-induced proteolysis, bovine serum albumin (BSA) was chosen as an extracellular protein and modified with maleimide-conjugated m-carborane (MIC). The measurement of the ζ-potentials and the lysine residue modification with fluorescein isothiocyanate (FITC) of BSA-MIC conjugates suggested that the conjugation of carborane induced the exposure of lysine residues on BSA, resulting in the degradation via ubiquitin E3 ligase-related proteasome pathways in the cell.


Assuntos
Proteólise
9.
Bioorg Med Chem ; 46: 116357, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391121

RESUMO

Amyloid ß (Aß) aggregation inhibitor activity cliff involving a curcumin structure was predicted using the SAR Matrix method on the basis of 697 known Aß inhibitors from ChEMBL (data set 2487). Among the compounds predicted, compound B was found to possess approximately 100 times higher inhibitory activity toward Aß aggregation than curcumin. TEM images indicate that compound B induced the shortening of Aß fibrils and increased the generation of Aß oligomers in a concentration dependent manner. Furthermore, compound K, in which the methyl ester of compound B was replaced by the tert-butyl ester, possessed low cytotoxicity on N2A cells and attenuated Aß-induced cytotoxicity, indicating that compound K would have an ability for preventing neurotoxicity caused by Aß aggregation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Curcumina/farmacologia , Desenvolvimento de Medicamentos , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Curcumina/síntese química , Curcumina/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
10.
EMBO Rep ; 22(6): e51323, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33938112

RESUMO

In eukaryotic cells, mitochondria are closely tethered to the endoplasmic reticulum (ER) at sites called mitochondria-associated ER membranes (MAMs). Ca2+ ion and phospholipid transfer occurs at MAMs to support diverse cellular functions. Unlike those in yeast, the protein complexes involved in phospholipid transfer at MAMs in humans have not been identified. Here, we determine the crystal structure of the tetratricopeptide repeat domain of PTPIP51 (PTPIP51_TPR), a mitochondrial protein that interacts with the ER-anchored VAPB protein at MAMs. The structure of PTPIP51_TPR shows an archetypal TPR fold, and an electron density map corresponding to an unidentified lipid-like molecule probably derived from the protein expression host is found in the structure. We reveal functions of PTPIP51 in phospholipid binding/transfer, particularly of phosphatidic acid, in vitro. Depletion of PTPIP51 in cells reduces the mitochondrial cardiolipin level. Additionally, we confirm that the PTPIP51-VAPB interaction is mediated by the FFAT-like motif of PTPIP51 and the MSP domain of VAPB. Our findings suggest that PTPIP51 is a phospholipid transfer protein with a MAM-tethering function.


Assuntos
Cálcio , Fosfolipídeos , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Proteínas Tirosina Fosfatases
11.
Expert Opin Ther Pat ; 31(5): 387-397, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33455469

RESUMO

Introduction: Hypoxia-inducible factor (HIF) is a master regulator of oxygen homeostasis. The increased expression of genes targeted by HIF is associated with many human diseases, including ischemic cardiovascular disease, stroke, chronic lung disease, and cancer.Areas covered: This patent survey summarizes the information about patented HIF inhibitors over the last 5 years.Expert opinion: HIF inhibitors have shown promise for the treatment of hypoxic pulmonary hypertension, a circadian rhythm disorder, calcific aortic valve disease, cerebrovascular accident, and heterotopic ossification. In addition, HIF-2α inhibitors can be used for the treatment or prevention of iron overload disorders, Crohn's disease, ulcerative colitis, and thyroid eye disease, or to improve muscle generation and repair. PT2385 completed phase I clinical trials for the treatment of clear cell renal cell carcinoma. It exerted a higher synergistic inhibitory effect on tumor growth in combination with anti-PD-1 antibody, in comparison with each treatment alone, indicating that effective immunotherapy for solid tumors counteracts of the immunosuppression induced by hypoxia. Therefore, considering the effects of hypoxia on cancer cells, stromal cells, and effector immune cells, it is important to develop inhibitors of molecular pathways activated by hypoxia for successful treatments.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Desenvolvimento de Medicamentos , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Patentes como Assunto , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo
12.
BMB Rep ; 54(6): 305-310, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33408001

RESUMO

Cereblon (CRBN) is a multi-functional protein that acts as a substrate receptor of the E3 ligase complex and a molecular chaperone. While CRBN is proposed to function in mitochondria, its specific roles are yet to be established. Here, we showed that knockdown of CRBN triggers oxidative stress and calcium overload in mitochondria, leading to disruption of mitochondrial membrane potential. Notably, long-term CRBN depletion using PROteolysis TArgeting Chimera (PROTAC) induced irreversible mitochondrial dysfunction, resulting in cell death. Our collective findings indicate that CRBN is required for mitochondrial homeostasis in cells. [BMB Reports 2021; 54(6): 305-310].


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mitocôndrias/patologia , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/deficiência , Apoptose , Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Ubiquitinação
13.
Biomed Pharmacother ; 133: 111082, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378978

RESUMO

Hypoxia-inducible factor (HIF)-1 is an important regulator of the cellular response in the hypoxic tumor environment. While searching for HIF inhibitors derived from natural products that act as anticancer agents, we found that Glycyrrhiza uralensis exerts HIF-1 inhibitory activity in hypoxic cancer cells. Among the five components of G. uralensis, licochalcone A was found to potently suppress hypoxia-induced HIF-1α accumulation and expression of HIF-1α target genes, including GLUT1 and PDK1 in HCT116 cells. Licochalcone A also enhances intracellular oxygen content by directly inhibiting mitochondrial respiration, resulting in oxygen-dependent HIF-1α degradation. Hence, licochalcone A may effectively inhibit ATP production, primarily by reducing the mitochondrial respiration-mediated ATP production rate rather than the glycolysis-mediated ATP production rate. This effect subsequently suppresses cancer cell viability, including that of HCT116, H1299, and H322 cells. Consequently, these results suggest that licochalcone A has therapeutic potential in hypoxic cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Chalconas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Microambiente Tumoral , Trifosfato de Adenosina/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais , Hipóxia Tumoral
14.
Exp Mol Med ; 52(11): 1845-1856, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33235318

RESUMO

Targeting cancer metabolism has emerged as an important cancer therapeutic strategy. Here, we describe the synthesis and biological evaluation of a novel class of hypoxia-inducible factor (HIF)-1α inhibitors, disubstituted adamantyl derivatives. One such compound, LW1564, significantly suppressed HIF-1α accumulation and inhibited the growth of various cancer cell lines, including HepG2, A549, and HCT116. Measurements of the oxygen consumption rate (OCR) and ATP production rate revealed that LW1564 suppressed mitochondrial respiration, thereby increasing the intracellular oxygen concentration to stimulate HIF-1α degradation. LW1564 also significantly decreased overall ATP levels by inhibiting mitochondrial electron transport chain (ETC) complex I and downregulated mammalian target of rapamycin (mTOR) signaling by increasing the AMP/ATP ratio, which increased AMP-activated protein kinase (AMPK) phosphorylation. Consequently, LW1564 promoted the phosphorylation of acetyl-CoA carboxylase, which inhibited lipid synthesis. In addition, LW1564 significantly inhibited tumor growth in a HepG2 mouse xenograft model. Taken together, the results indicate that LW1564 inhibits the growth of cancer cells by targeting mitochondrial ETC complex I and impairing cancer cell metabolism. We, therefore, suggest that LW1564 may be a potent therapeutic agent for a subset of cancers that rely on oxidative phosphorylation for ATP generation.


Assuntos
Adamantano/farmacologia , Respiração Celular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adamantano/análogos & derivados , Adamantano/química , Trifosfato de Adenosina/biossíntese , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , Camundongos , Consumo de Oxigênio , Transdução de Sinais
15.
Cancers (Basel) ; 12(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937886

RESUMO

The three major members of non-coding RNAs (ncRNAs), named microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in hepatocellular carcinoma (HCC) development. Recently, the competing endogenous RNA (ceRNA) regulation model described lncRNA/circRNA as a sponge for miRNAs to indirectly regulate miRNA downstream target genes. Accumulating evidence has indicated that ceRNA regulatory networks are associated with biological processes in HCC, including cancer cell growth, epithelial to mesenchymal transition (EMT), metastasis, and chemoresistance. In this review, we summarize recent discoveries, which are specific ceRNA regulatory networks (lncRNA/circRNA-miRNA-mRNA) in HCC and discuss their clinical significance.

16.
Sci Rep ; 10(1): 3772, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111933

RESUMO

In this study, ultrasensitive and precise detection of a representative brain hormone, dopamine (DA), was demonstrated using functional conducting polymer nanotubes modified with aptamers. A high-performance aptasensor was composed of interdigitated microelectrodes (IMEs), carboxylated polypyrrole nanotubes (CPNTs) and DA-specific aptamers. The biosensors were constructed by sequential conjugation of CPNTs and aptamer molecules on the IMEs, and the substrate was integrated into a liquid-ion gating system surrounded by pH 7.4 buffer as an electrolyte. To confirm DA exocytosis based on aptasensors, DA sensitivity and selectivity were monitored using liquid-ion gated field-effect transistors (FETs). The minimum detection level (MDL; 100 pM) of the aptasensors was determined, and their MDL was optimized by controlling the diameter of the CPNTs owing to their different capacities for aptamer introduction. The MDL of CPNT aptasensors is sufficient for discriminating between healthy and unhealthy individuals because the total DA concentration in the blood of normal person is generally determined to be ca. 0.5 to 6.2 ng/mL (3.9 to 40.5 nM) by high-performance liquid chromatography (HPLC) (this information was obtained from a guidebook "Evidence-Based Medicine 2018 SCL " which was published by Seoul Clinical Laboratory). The CPNTs with the smaller diameters (CPNT2: ca. 120 nm) showed 100 times higher sensitivity and selectivity than the wider CPNTs (CPNT1: ca. 200 nm). Moreover, the aptasensors based on CPNTs had excellent DA discrimination in the presence of various neurotransmitters. Based on the excellent sensing properties of these aptasensors, the DA levels of exogeneous DA samples that were prepared from PC12 cells by a DA release assay were successfully measured by DA kits, and the aptasensor sensing properties were compared to those of standard DA reagents. Finally, the real-time response values to the various exogeneous DA release levels were similar to those of a standard DA aptasensor. Therefore, CPNT-based aptasensors provide efficient and rapid DA screening for neuron-mediated genetic diseases such as Parkinson's disease.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Dopamina , Exocitose , Nanotubos/química , Animais , Dopamina/análise , Dopamina/metabolismo , Células PC12 , Pirróis/química , Ratos , Transistores Eletrônicos
17.
Biochem Biophys Res Commun ; 523(3): 726-732, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31948750

RESUMO

Betulinic acid (BA) exhibits various biological activities such as anti-bacterial, anti-inflammatory, anti-human papilloma virus (HPV), and anti-cancer activities. HPV infection is associated with a high risk of cervical cancer, which is the leading cause of deaths among women worldwide. Therefore, BA is an attractive therapeutic agent for treating cervical cancer. In this study, we investigated the role of BA in regulating the hypoxia-mediated response in HeLa cells and clarified the underlying mechanism of action. We found that BA inhibited the hypoxia-induced accumulation of HIF-1α without affecting HIF-1α mRNA levels and suppressed the expression of HIF target genes, including VEGF, GLUT1, and PDK1 in HeLa cells. Additionally, BA enhanced the ß1, ß2, and ß5 activities of the proteasome, which resulted in reduced levels of ubiquitinated proteins and HIF-1α protein in HeLa cells. However, BA treatment did not affect the deubiquitinase enzyme activity in HeLa cells. These results indicate that inhibition of HIF-1α accumulation by BA is mediated by activation of the proteasome, and BA is a potential anticancer agent for the regulation of the HIF signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Triterpenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Triterpenos Pentacíclicos , Hipóxia Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Ácido Betulínico
18.
Cancers (Basel) ; 11(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816819

RESUMO

Although gastric cancer is a common cause of cancer mortality worldwide, its biological heterogeneity limits the available therapeutic options. Therefore, identifying novel therapeutic targets for developing effective targeted therapy of gastric cancer is a pressing need. Here, we investigate molecular function and regulatory mechanisms of Vestigial-like 1 (VGLL1) in gastric cancer. Microarray analysis of 556 gastric cancer tissues revealed that VGLL1 was a prognostic biomarker that correlated with PI3KCA and PI3KCB. VGLL1 regulates the proliferation of gastric cancer cells, as shown in live cell imaging, sphere formation, and in vivo xenograft model. Tail vein injection of NUGC3 cells expressing shVGLL1 resulted in less lung metastasis occurring when compared to the control. In contrast, larger metastatic lesions in lung and liver were detected in the VGLL1-overexpressing NUGC3 cell xenograft excision mouse model. Importantly, VGLL1 expression is transcriptionally regulated by the PI3K-AKT-ß-catenin pathway. Subsequently, MMP9, a key molecule in gastric cancer, was explored as one of target genes that were transcribed by VGLL1-TEAD4 complex, a component of the transcription factor. Taken together, PI3K/AKT/ß-catenin signaling regulates the transcription of VGLL1, which promotes the proliferation and metastasis in gastric cancer. This finding suggests VGLL1 as a novel prognostic biomarker and a potential therapeutic target.

19.
Genes (Basel) ; 10(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817259

RESUMO

Hypoxia-inducible factors (HIFs) are transcription factors that play central roles in cellular responses against hypoxia. In most cancers, HIFs are closely associated with tumorigenesis by regulating cell survival, angiogenesis, metastasis, and adaptation to the hypoxic tumor microenvironment. Recently, non-coding RNAs (ncRNAs) have been reported to play critical roles in the hypoxic response in various cancers. Here, we review the roles of hypoxia-response ncRNAs in gastrointestinal cancer, with a particular focus on microRNAs and long ncRNAs, and discuss the functional relationships and regulatory mechanisms between HIFs and ncRNAs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Gastrointestinais , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , RNA Neoplásico , RNA não Traduzido , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA não Traduzido/biossíntese , RNA não Traduzido/genética , Transdução de Sinais/genética
20.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557887

RESUMO

Heat shock proteins (HSPs) are associated with various physiological processes (protein refolding and degradation) involved in the responses to cellular stress, such as cytotoxic agents, high temperature, and hypoxia. HSPs are overexpressed in cancer cells and play roles in their apoptosis, invasion, proliferation, angiogenesis, and metastasis. The regulation or translational modification of HSPs is recognized as a therapeutic target for the development of anticancer drugs. Among the regulatory processes associated with HSP expression, the epigenetic machinery (miRNAs, histone modification, and DNA methylation) has key functions in cancer. Moreover, various epigenetic modifiers of HSP expression have also been reported as therapeutic targets and diagnostic markers of cancer. Thus, in this review, we describe the epigenetic alterations of HSP expression in cancer cells and suggest that HSPs be clinically applied as diagnostic and therapeutic markers in cancer therapy via controlled epigenetic modifiers.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/genética , Neoplasias/genética , Animais , Apoptose , Biomarcadores Tumorais , Metilação de DNA , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...